
Nitrogen dioxide

Nitrogen dioxide is a chemical compound with the formula NO₂. It is one of several nitrogen oxides. NO₂ is an intermediate in the industrial synthesis of nitric acid, millions of tons of which are produced each year which is used primarily in the production of fertilizers. At higher temperatures it is a reddish-brown.^[8]

Nitrogen dioxide is a <u>paramagnetic</u>, bent molecule with C_{2v} <u>point group symmetry</u>.

Nitrogen dioxide

 (NO_2) converts to the colorless <u>dinitrogen</u> <u>tetroxide</u> (N_2O_4) at low temperatures and reverts to NO_2 at higher temperatures.

Names

IUPAC name

Nitrogen dioxide

Other names

Dre	nn	PTIAC	
	JUE	rties)
			3
	-		

Chemical formula NO₂

Molar mass 46.006 g/mol^[2]

Appearance Brown gas^[2]

Odor Chlorine like

<u>Density</u> <u>Melting point</u>	1.880 g/L ^[2] -9.3 °C (15.3 °F;	
	263.8 K) ^[2]	
Boiling point	21.15 °C (70.07 °F; 294.30 K) ^[2]	
Solubility in water	Hydrolyses	
<u>Solubility</u>	soluble in <u>CCl₄</u> , <u>nitric</u> <u>acid</u> , ^[3] <u>chloroform</u>	
Vapor pressure	98.80 kPa (at 20 °C)	
<u>Magnetic</u> <u>susceptibility</u> (χ)	+150.0·10 ⁻⁶ cm ³ /mol ^[<u>4</u>]	
Refractive index (n_D)	1.449 (at 20 °C)	
Structure		
Point group	C _{2v}	

Molecular shape	Bent		
Thermochemistry ^[5]			
Heat capacity (C)	37.2 J/(mol·K)		
Std molar entropy (S ^e 298)	240.1 J/(mol·K)		
Std enthalpy of formation ($\Delta_f H^{\mathbb{Z}}_{298}$)	+33.2 kJ/mol		
Hazards			
Haz	ards		
Main <u>hazards</u>	Poison, oxidizer		
Main <u>hazards</u>	Poison, oxidizer		
Main <u>hazards</u> <u>Safety data sheet</u>	Poison, oxidizer		

294.3 K), and converts to the colorless dinitrogen tetroxide (N₂O₄) below -11.2 °C (11.8 °F; 261.9 K). [6]

The <u>bond</u> length between the <u>nitrogen</u> atom and the oxygen atom is 119.7 <u>pm</u>.

This bond length is consistent with a <u>bond</u> order between one and two.

Unlike <u>ozone</u>, O₃, the <u>ground electronic</u> <u>state</u> of nitrogen dioxide is a <u>doublet state</u>, since nitrogen has one unpaired electron, ^[9] which decreases the <u>alpha</u> <u>effect</u> compared with <u>nitrite</u> and creates a weak bonding interaction with the oxygen

lone pairs. The lone electron in NO₂ also means that this compound is a <u>free</u> radical, so the formula for nitrogen dioxide is often written as 'NO₂.

The reddish-brown color is a consequence of preferential absorption of light in the blue (400 – 500 nm), although the absorption extends throughout the visible (at shorter wavelengths) and into the infrared (at longer wavelengths).

Absorption of light at wavelengths shorter than about 400 nm results in photolysis (to form NO + O, atomic oxygen); in the

Properties

Nitrogen dioxide is a reddish-brown gas above 21.2 °C (70.2 °F; 294.3 K) with a pungent, acrid odor, becomes a yellowish-brown liquid below 21.2 °C (70.2 °F;

atmosphere the addition of O atom so formed to O_2 results in ozone formation.

Preparation and reactions

Nitrogen dioxide typically arises via the oxidation of <u>nitric oxide</u> by oxygen in air: [10]

$$2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$$

Nitrogen dioxide is formed in most combustion processes using <u>air</u> as the oxidant. At elevated temperatures <u>nitrogen</u> combines with <u>oxygen</u> to form <u>nitric oxide</u>:

$$O_2 + N_2 \rightarrow 2 NO$$

In the laboratory, NO₂ can be prepared in a two-step procedure where dehydration of nitric acid produces dinitrogen pentoxide, which subsequently undergoes thermal decomposition:

$$2 \text{ HNO}_3 \rightarrow \text{N}_2\text{O}_5 + \text{H}_2\text{O}$$

 $2 \text{ N}_2\text{O}_5 \rightarrow 4 \text{ NO}_2 + \text{O}_2$

The thermal decomposition of some metal nitrates also affords NO₂:

$$2 \text{ Pb(NO}_3)_2 \rightarrow 2 \text{ PbO} + 4 \text{ NO}_2 + \text{O}_2$$

Alternatively, reduction of concentrated nitric acid by metal (such as copper).

$$4 \text{ HNO}_3 + \text{Cu} \rightarrow \text{Cu}(\text{NO}_3)_2 + 2 \text{ NO}_2 + 2 \text{ H}_2\text{O}$$

Or finally by adding concentrated nitric acid over tin, hydrated <u>stannic oxide</u> is produced as byproduct.

$$4 \text{ HNO}_3 + \text{Sn} \rightarrow \text{H}_2\text{O} + \text{H}_2\text{SnO}_3 + 4 \text{ NO}_2$$

Main reactions

Basic thermal properties

NO₂ exists in equilibrium with the colourless gas <u>dinitrogen tetroxide</u> (N₂O₄):

$$2 \text{ NO}_2 = \text{N}_2\text{O}_4$$

The equilibrium is characterized by $\Delta H = -57.23$ kJ/mol, which is exothermic. NO_2 is favored at higher temperatures, while at lower temperatures, dinitrogen tetroxide (N_2O_4) predominates. <u>Dinitrogen tetroxide</u> (N_2O_4) can be obtained as a white solid with melting point -11.2 °C. [10] NO_2 is <u>paramagnetic</u> due to its unpaired electron, while N_2O_4 is <u>diamagnetic</u>.

The chemistry of nitrogen dioxide has been investigated extensively. At 150 °C, NO₂ decomposes with release of oxygen

via an endothermic process $(\Delta H = 14 \text{ kJ/mol})$:

$$2 \text{ NO}_2 \rightarrow 2 \text{ NO} + \text{O}_2$$

As an oxidizer

As suggested by the weakness of the N-O bond, NO₂ is a good oxidizer.

Hydrolysis

It <u>hydrolyses</u> to give <u>nitric acid</u> and <u>nitrous</u> <u>acid</u>:

$$2 \text{ NO}_2 (\text{N}_2\text{O}_4) + \text{H}_2\text{O} \rightarrow \text{HNO}_2 + \text{HNO}_3$$

This reaction is one step in the <u>Ostwald process</u> for the industrial production of nitric acid from ammonia. [11] This reaction is negligibly slow at low concentrations of NO_2 characteristic of the ambient atmosphere, although it does proceed upon NO_2 uptake to surfaces. Such surface reaction is thought to produce gaseous $\underline{HNO_2}$ (often written as \underline{HONO}) in outdoor and indoor environments. [12]

Formation from decomposition of nitric acid

Nitric acid decomposes slowly to nitrogen dioxide by the overall reaction:

$$4 \text{ HNO}_3 \rightarrow 4 \text{ NO}_2 + 2 \text{ H}_2 \text{O} + \text{O}_2$$

The nitrogen dioxide so formed confers the characteristic yellow color often exhibited by this acid.

Conversion to nitrates

NO₂ is used to generate anhydrous metal nitrates from the oxides:^[10]

$$MO + 3 NO_2 \rightarrow M(NO_3)_2 + NO$$

Conversion to nitrites

Alkyl and metal iodides give the corresponding nitrites:

$$2 \text{ CH}_{3}\text{I} + 2 \text{ NO}_{2} \rightarrow 2 \text{ CH}_{3}\text{NO}_{2} + \text{I}_{2}$$

 $\text{TiI}_{4} + 4 \text{ NO}_{2} \rightarrow \text{Ti}(\text{NO}_{2})_{4} + 2 \text{I}_{2}$

Ecology

 NO_2 is introduced into the environment by natural causes, including entry from the <u>stratosphere</u>, bacterial respiration, volcanos, and lightning. These sources make NO_2 a <u>trace gas</u> in the <u>atmosphere</u>

of Earth, where it plays a role in absorbing sunlight and regulating the chemistry of the troposphere, especially in determining ozone concentrations. [13]

Uses

NO₂ is used as an intermediate in the manufacturing of <u>nitric acid</u>, as a nitrating agent in manufacturing of <u>chemical</u> <u>explosives</u>, as a polymerization inhibitor for <u>acrylates</u>, as a <u>flour bleaching</u> <u>agent</u>., [14]:223 and as a room temperature sterilization agent. [15] It is also used as an <u>oxidizer</u> in <u>rocket fuel</u>, for example in <u>red</u>

fuming nitric acid; it was used in the <u>Titan</u> rockets, to launch <u>Project Gemini</u>, in the maneuvering thrusters of the <u>Space</u> <u>Shuttle</u>, and in unmanned <u>space probes</u> sent to various planets. [16]

Nitrogen dioxide NO2 and dinitrogen tetroxide N2O4

NO₂ is a red-brown poisonous gas and is produced on a large scale by oxidizing NO in the Ostwald process for the manufacture of nitric acid. In the laboratory it is prepared by heating lead nitrate:

$$2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2$$

The gaseous products O_2 and NO_2 are passed through a U-tube cooled in ice. The NO_2 (b.p. 21 °C) condenses. The $Pb(NO_3)_2$ must be carefully dried, since NO_2 reacts with water. The NO_2 is obtained as a brown liquid which turns paler on cooling, and eventually becomes a colourless solid. This is because NO_2 dimerizes into colourless N_2O_4 . NO_2 is an odd electron molecule, and is paramagnetic and very reactive. It dimerizes to N_2O_4 , pairing the previously unpaired electrons. N_2O_4 has no unpaired electrons and is diamagnetic.

N₂O₄ is a mixed anhydride, because it reacts with water to give a mixture

$$N_2O_4 + H_2O \rightarrow HNO_3 + HNO_2$$

The HNO₂ formed decomposes to give NO.

$$2HNO_2 \rightarrow NO_2 + NO + H_2O$$
$$2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$$

Thus moist NO₂ or N₂O₄ gases are strongly acidic.

The NO₂ molecule is angular with an O—N—O angle of 132°. The bond The NO₂ molecule is angular which length O—N of 1.20 Å is intermediate between a single and a double bond length O—N of 1.20 Å is intermediate between a single and a double bond X-ray diffraction on solid N₂O₄ shows the structure to be planar.

The N-N bond is very long (1.64 Å), and is therefore weak. It is much longer than the single bond N-N distance of 1.47 Å in N₂H₄, but there is no

Liquid N₂O₄ is useful as a non-aqueous solvent. It self-ionizes:

$$N_2O_4 \rightleftharpoons NO^+ + NO_3^-$$
acid $base$

In N₂O₄ substances containing NO⁺ are acids and those containing NO₃ are bases. A typical acid-base reaction is:

$$NOCI + NH4NO3 \rightarrow NH4CI + N2O4$$
solvent

Liquid N₂O₄ is particularly useful as a solvent for preparing anhydrous metal nitrates and also nitrato complexes.

$$ZnCl_2 + N_2O_4 \rightarrow Zn(NO_3)_2 + 2NOCl$$

 $TiBr_4 + N_2O_4 \rightarrow Ti(NO_3)_4 + 4NO + 2I_2$

The NO₂-N₂O₄ system is a strong oxidizing agent. NO₂ reacts with fluorine and chlorine, forming nitryl fluoride NO₂F and nitryl chloride NO₂Cl. It oxidizes HCl to Cl₂ and CO to CO₂.

$$2NO_2 + F_2 \rightarrow 2NO_2F$$

$$2NO_2 + Cl_2 \rightarrow 2NO_2Cl$$

$$2NO_2 + 4HCl \rightarrow 2NOCl + Cl_2 + 2H_2O$$

$$NO_2 + CO \rightarrow CO_2 + NO$$